Quartil Definition und Berechnung (2023)

Video anzeigen

Hier geht's zum Video „Boxplot“Hier geht's zum Video „Quantile“

Du fragst dich: Was ist ein Quartil und was genau ist dieDefinition von Quartilen? Hier bekommst du diesen Begriff der Statistik einfach erklärt und wir zeigen dir außerdem, wie du ein Quartil berechnenkannst. Noch schneller lernst du alles über Quartile in unserem Videokennen, welches dir nach einer einfachen Erklärung zeigt, wie du diese speziellen Lagemaße der Statistik bestimmen und berechnen kannst.

Inhaltsübersicht
  • Quartil einfach erklärt
  • Quartile berechnen
  • Quartil Quantil
  • Boxplot

Quartil einfach erklärt

im Videozur Stelle im Video springen

(00:11)

Quartile sind ganz spezielle Quantile und gehören somit zu den Lagemaßen der Statistik. Allgemein ist das Ziel von Quantilen einen Datensatz in Abschnitte einzuteilen. Diese Abschnitte können beliebig groß sein. Von einem Quartil spricht man, wenn die sortierte Datenreihe in vier gleich große Klassen aufgeteilt wird.

Genau genommen sind Quartile so genannte empirische Quartile, das heißt sie sind Kennzahlen einer bestimmten Stichprobe. Was genau das bedeutet, erklären wir dir im Absatz Quartil Quantil. Durch die Einteilung der Stichprobe in vier gleich große Teile entstehen somit drei Quartile, welche auch als oberes Quartil, Median und unteres Quartil bekannt sind.

Wenn du dich nun fragst, warum immer nur von 3 Quartilen die Rede ist, haben wir auch darauf eine Antwort. Der vierte und letzte Teil des Datensatzes deckt nach der Aufteilung alle anderen Teile und somit die Gesamtheit ab. Daher ist dieses statistisch nicht relevant und wird nicht explizit als 4tes Quartil bezeichnet.

Oftmals werden Quartile unterschiedlich notiert oder bezeichnet, gemeint ist aber eigentlich immer das selbe:

1. Quartil= Q1 = 25%- Quartil = 0,25 Quartil = Quartil Definition und Berechnung (1) = unteres Quartil

2. Quartil=Q1= 50%- Quartil= 0,50 Quartil= Quartil Definition und Berechnung (2) = Median

3. Quartil=Q1= 75%- Quartil= 0,75 Quartil= Quartil Definition und Berechnung (3) = oberes Quartil

Quartil Definition und Berechnung (4)

direkt ins Video springen

Quartil – Definition

Quartil ist Latein für Viertelwert. Quartile zerlegen sortierte Datenreihen also in vier (annähernd) gleich große Abschnitte oder Klassen. Sie sind ein wichtiges Lagemaß der Statistik.

Quartile berechnen

im Videozur Stelle im Video springen

(01:19)

Bei der Berechnung macht es einen Unterschied, ob Quartil Definition und Berechnung (5) ganzzahlig oder nicht ganzzahlig ist. Zentral für die Berechnung von allen Quantilen, also auch von Quartilen, ist folgende Formel:

Quartil Definition und Berechnung (6)

Das n steht hier für die Anzahl an Beobachtungen und p für das p-Quantil. In unserem Fall gilt also immer p=0,25, p= 0,5 oder p=0.75, da wir ja Quartile, also Viertelwerte berechnen wollen. Die Klammer im Index des zweiten Teils der Formel bedeutet, dass du den Wert zwischen der Klammer immer abrunden musst, egal wie nah er am nächsthöherem Wert liegt. Wie man auch für andere Quantile mit dieser Formel rechnen kann, erfährst du in unserem Video zu Quantilen! Damit das Ganze im Falle von Quartilen klarer wird, bestimmen und berechnen wir diese im Folgenden beispielsweise für zwei verschiedene Datensätze mit n=7 und im Anschluss für n=8.

Du bist gerade auf der Suche nach einem dualen Studium oder Ausbildungsplatz?Wir von Studyflix helfen dir weiter. ImStudyflix Ausbildungsportalwartenüber 10.000 freie Plätzeauf dich. Schau doch mal vorbei.

Du willst wissen, wofür du das ThemaQuartillernst? Über dasStudyflix Jobportalkannst du dich auf die Suche nach Praxiserfahrung begeben. Hier wartenüber 20.000Praktika, Werkstudentenstellen, Einstiegsjobs und auch Abschlussarbeiten auf dich. Schau doch mal vorbei.

Beispiel: Quartil bestimmen mit n=7

im Videozur Stelle im Video springen

(00:37)

Folgender Datensatz ist gegeben:

1234567
0,351,302,053,003,554,755,14

Als erstes rechnest du Quartil Definition und Berechnung (7), um zu überprüfen, welche Formel du verwenden musst. Für unser Beispiel erhältst du also:

Quartil Definition und Berechnung (8)

Quartil Definition und Berechnung (9)

Quartil Definition und Berechnung (10)

Du erhältst also nicht ganzzahlige Werte, somit musst du den zweiten Teil der Formel verwenden. Das heißt, du musst dein Ergebnis immer abrunden und anschließend 1 addieren. Nun kannst du ganz einfach die Position des gesuchten Lagemaßes bestimmen.

Quartil Definition und Berechnung (11)

direkt ins Video springen

1,75 ergibt abgerundet1. Addierst du anschließend 1 hinzu weißt du, dass sich Q1 an der 2ten Stelle des Datensatzes befindet. Die nächstkleinere ganze Zahl von 3,50 ist 3. Somit weißt du, dass nach der Addition von 1 der Median, also Q2, an der Stelle 4 liegt. Auch bei 5,25 wird zurnächstkleineren ganzen Zahl abgerundet. 5 + 1 ergibt 6. Somit ist klar, dass Q3 an der 6ten Stelle des Datensatzes ist.

Unteres Quartil berechnen

Nun ist die Berechnung der einzelnen Quartile nicht mehr schwer. Genau genommen musst du den richtigen Wert nur noch aus der Tabelle an der passenden Stelle ablesen. Für unser Beispiel befindet sich das untere Quartil an der zweiten Stelle des Datensatzes. Durch Ablesen erhältst du:

Quartil Definition und Berechnung (12)

Median berechen

Um Q2 zu berechnen, kannst du analog vorgehen. Nachdem du die Position bestimmt hast, kannst du den Wert ablesen, welcher den Datensatz genau in der Mitte teilt. Für das Beispiel mit n=7 hast du für den Median die Position 4 ermittelt. Der Wert an der vierten Stelle ist für diesen Datensatz 3,00.

Quartil Definition und Berechnung (13)

Oberes Quartil berechnen

Das obere Quartil befindet sich also an der 6ten Stelle der Tabelle. Auch hier ist wieder kein Rechenaufwand nötig, sondern nur einfaches Ablesen aus dem sortierten Datensatz:

Quartil Definition und Berechnung (14)

Quartil Definition und Berechnung (15)

direkt ins Video springen

Beispiel: Quartil bestimmen mit n=8

im Videozur Stelle im Video springen

(02:36)

Ist das Ergebnis aus Quartil Definition und Berechnung (16) ganzzahlig, so ist das Ermitteln der Quartile etwas komplizierter. Gegeben ist wieder der sortierte Datensatz. Dieser wird nun um einen zusätzlichen Wert erweitert:

12345678
0,351,302,053,003,554,755,146,05

Für Quartil Definition und Berechnung (17) erhältst du folgende Werte:

Quartil Definition und Berechnung (18)

Quartil Definition und Berechnung (19)

Quartil Definition und Berechnung (20)

Nun weißt du, dass du den oberen Teil der Formel verwenden musst und kannst als erstes wieder die Lage des gesuchten Wertes bestimmen. So weißt du später bei der Berechnung, welche Werte du in die Formel einsetzen musst.

Quartil Definition und Berechnung (21) =Quartil Definition und Berechnung (22)

Quartil Definition und Berechnung (23) Q1 liegt bei diesem Beispiel an der Stelle 2,5, also genau in der Mitte der Werte von 2 und 3.

Quartil Definition und Berechnung (24) =Quartil Definition und Berechnung (25)

Quartil Definition und Berechnung (26) Folglich liegt Q2 an der Stelle 4,5, also genau in der Mitte der Werte von 4 und 5.

Quartil Definition und Berechnung (27) =Quartil Definition und Berechnung (28)

Quartil Definition und Berechnung (29) Das obere Quartil Q3 liegt also bei diesem Beispiel an der Stelle 6,5. Das bedeutet die Lage ist genau zwischen 6 und 7.

Unteres Quartil berechnen

Mit diesem Wissen kannst du nun die genauen Werte der Quartile berechnen und die richtigen Zahlen in die Formel einsetzen. Da du ja keinen Wert für 2,5 in deiner Tabelle gegeben hast, musst du logischerweise die Werte für 2 und 3 in die Formel einsetzen. So erhälst du dann den Wert für 2,5. Für das untere Quartil ergibt sich also:

Quartil Definition und Berechnung (30) =Quartil Definition und Berechnung (31)

Jetzt weißt du, dass 0,25%, also ein Viertel der Werte kleiner und 75% der Werte größer sind als 1,68.

Median berechnen

Nun kannst du auch den Wert berechnen, der deinen Datensatz in genau zwei gleich große Bereiche unterteilt. Du setzt die Werte aus der Tabelle für 4 und 5 ein.

Quartil Definition und Berechnung (32) =Quartil Definition und Berechnung (33)

Der Median bzw. Q2 deines Datensatzes liegt also bei 3,28. Daher weißt du, dass die Hälfte der Werte größer ist als 3,28 und die andere Hälfte kleiner.

Oberes Quartil

Zum Schluss musst du die Werte für 6 und 7 einsetzen, um den Wert des oberen Quartils zu erhalten.

Quartil Definition und Berechnung (34) =Quartil Definition und Berechnung (35)

Das obere Quartil liegt bei 4,95. Du weißt also, dass genau 75% deiner Daten unter diesem Wert liegen.

Quartil Definition und Berechnung (36)

direkt ins Video springen

Quartil Quantil

im Videozur Stelle im Video springen

(04:00)

Quartile sind also wie bereits gesagt spezielle Quantile. Mit speziell ist in diesem Fall gemeint, dass durch die Quartile die Daten einer konkreten Stichprobe in vier gleich große Teile untergliedert werden. Daher ist auch die Rede von empirischen p-Quantilen. Die wichtigsten empirischen Quantile tragen Eigennamen. Zu ihnen gehören neben den Quartilen mit dem Median, dem oberen und unteren Quartil zum Beispiel auch dieTerzile,Quintile,Dezileund diePerzentile. Diese unterteilen den Datensatz in 3, 5, 10 beziehungsweise 100 gleich große Teile. Für die gängigsten Berechnungen in der Statistik werden jedoch meist nur die Quartile benötigt.

Boxplot

Da den Quartilen in der Statistik ein so hoher Stellenwert zukommt, ist es sinnvoll diese für den Datensatz der Stichprobe zu visualisieren. Dazu wird ein so genannter Boxplot verwendet. Diese Kastengrafik stellt die wichtigstenLagemaße übersichtlich dar. Konkret werden hier das Minimum (unterer Whisker), das untere Quartil, der Median, das obere Quartil und das Maximum (oberer Whisker) abgebildet, welche als die wichtigsten 5 Quantile des Datensatzes gelten. In diesen Zusammenhang sind auch dieSpannweite und Quartilsabstand sehr wichtig, welche sich mit demAbstand zwischen Minimum und Maximum befassen. Wie genau du mit diesen Informationen einen Boxplot zeichnen kannst, erklären wir dir in unserem dazugehörigen Video!

im Videozum Video springen
direkt ins Video springen

Beliebte Inhalte aus dem BereichDeskriptive Statistik

  • PerzentilDauer:04:14
  • DiagrammDauer:04:55
  • KreisdiagrammDauer:03:04
Top Articles
Latest Posts
Article information

Author: Pres. Carey Rath

Last Updated: 01/06/2023

Views: 5722

Rating: 4 / 5 (61 voted)

Reviews: 92% of readers found this page helpful

Author information

Name: Pres. Carey Rath

Birthday: 1997-03-06

Address: 14955 Ledner Trail, East Rodrickfort, NE 85127-8369

Phone: +18682428114917

Job: National Technology Representative

Hobby: Sand art, Drama, Web surfing, Cycling, Brazilian jiu-jitsu, Leather crafting, Creative writing

Introduction: My name is Pres. Carey Rath, I am a faithful, funny, vast, joyous, lively, brave, glamorous person who loves writing and wants to share my knowledge and understanding with you.